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A method for the computation of statistical characteristics of pressure pulsations directly
at a plate surface, based on the analysis of the Navier-Stokes equations is proposed. This
pemits in the case of flows past a plate to derive the unique relationship between the sec-
ond order moment of pressure pulsation at the surface and the second order moment of the
pulsation velocity longitudinal component in the immediate proximity of the plate surface.
Information about the velocity field required in this case is considerably smaller then that
necessary in the conventional approach used by Kraichnan [1] and Lilley (2].

1. We shall consider the turbulent boundary layer of an incompressible fluid along an
infinite flat plate defined by Eq. x, = 0. Coordinates x, and x; lie in the plate surface
plane. In this case the flow is subject to the NavierStokes equations and to the incompres~
sibility equation
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Here, ¢ is the time, p the pressure, pp the fluid density, v the viscosity, and v; the com~
ponent of velocity V in the direction of the x, -axis, with y; = 0 when x, =0,

We shall examine the hehavior of these equations in the close proximity of a smooth
flat wall {2y =10, —00o < x; <400, —00 {xy <4 ), Ladyzhenskaia in her monograph [3] and
in her subsequent paper {4} had shown that there exists a solution of Eq. (1.1), and that for
a sufficiently smooth surface S{§ &€ L,) the derivatives of velocity Vv, including those of
the second order are continuous in the bounded area, while first order derivatives of pres-
sure p are continuous up to the boundary.

On this basis we can examine Eqgs. {1.1) at the surface itself, When x, + + 0, we obtain
from the first of Eqs. (1.1) three relationships which correlate pressure gradients and the
second derivatives of velocities at the surface

/BT (b=—) (k=123 (1.2)
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We have made use here of the fact that at the stationary surface x, = O not only all v, =
=0 (=1, 2, 3), but also av,/(?t = 0, and that furthermore 3"‘+Pvi /ax;‘ axlp = 0 whenj,
142G=1,2 3\

Egs. {1.2) with subscripts k¥ = 1 and k = 3 represent a system of differential equations in
second order partial derivatives of pressure which completely defines pressure variation
along the plate surface. A single differential equation of the Poisson type may be readily
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obtained from this for the pressure distribution along the plate aurface only

%, (1, 72, 73, 1)

vx?:up (%1, 0, 25, ) =pp 9z0z, (i==1,3) (1.3)

Xp==0
Theé linearity of the first part of Eq. (1.3) gives it a certain advantage over the equation
previously used by Kraichnan [1] end Lilley (2]
P,
Vir, 2y, P (F10 T2, 23, 1) = —Po 9z 0z, -4
H

The derived Eq. (1.3) is not inconsistent with Eq. {1.4) as regards the pressure distri-
bution at any point of a turbulent stream, and is a particular case of the latter.

The computation of pressure characteristics on the surface by means of Eq. (1.3) is also
preferable because, first of all, it makes it possible to do with a lesser amount of informa-
tion about the boundary layer velocity field, and secondly it involves the solution of a two-
dimensional problem instead of having to integrate Eq. (1.4) over the whole volume.

The equation of pressure fluctuations in a turbulent boundary layer at the plate surface
is readily obtained from (1.3)

9%,

T (23, 0, 70, ) = b oz (i=1,3) (1.5)

=0

Eq. (1.5) is valid in the case of the basic stream being parallel to the plate {nongradient
flow), as well as in the case of the free stream flowing at an angle to the plate (positive,
or negative mean pressure gradient).

2. In space-time terms the Fourier-Stiltjes transform for velocity and pressure fluctua~
tions [5], Eq. (1.5) is expressed by (2.1)

ik %doy (ky, 72, ks, ©) ihop  0%dvg’ (ku, zo, ks, @)
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Here @ is the temporal frequency, and k (k;, & ;) the wave vector in the plate plane.
We shall take into account the relationship between the third derivatives of velocity
fluctuations (v,” and v, ") which is easily obtained from (1.2}

dp’ (k1, 0, ks, @)=

3%y’ _ owy
0220%3 |xy=0  O0Z20Ty |xy=0 (2.2)
As a result Eq. (2.1) is reduced to the form as follows:
1 ddy” (k‘], Zo, 3:3’, ka, (l))
dp’ (ks, 0, ks, ©) = S “ . 2.3)
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From (2.3) we establish in the usual manner the relation between the space-time spectra
of the fluctuating pressure at the wall and the fluctuating velocity longitudinal component

2 ME, . (ky, 22, o, ks, @)
Epp (kl, }fs, 0)): p‘ VW

(2.4)

k-lg. 6272261'2’2 X=Xy’ =0
The term Epp (ky, k3, @) will be understood to represent the average of the ensemble
of patterns of the turbulent boundary layer at the plates

<dp’ (k1, 0, ks, ©) dp’ (K1, 0, ks, 0)>

E o (ky, ks, =1
op (K1, k3, ©) =1lim T

for dk;+ 0 we have dky + 0, dw + 0.
From the space-time spectrum E (k ,, k5 @) we can obtain the reciprocal spectrum
I“pp(f,. 'fs s @) and the pressure correlation Rpp(}f‘. ”:3 s T), if we assume that spectrum

ooy by @) corresponds to a boundary layer uniform in directions parallel to the plate
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surface and stationary with reapect to time.

Here £, =x; = x, &= 2y — 23 £(£,, £;) is the distance between points under con-
sideration, and 7 = ¢ — ¢’ the time difference at these points. In a developed turbulent layer
at the surface of a smooth plate the conditions of uniformity and stationarity for zero mean
pressure gradient are approximately satisfied.

Relationship (2.4) which is fundamental in this analysis defines the statistical charac-
teristics of pressure at the surface in terms of the correlation function of the velocity lon-
gitudinal component, since

Ev,v, (kir Ty, 2‘2', kx, &)) =
09 +00 +00 29
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3. Even the most detailed measurements of the correlation function of the longitudinal
component of velocity in a boundary layer carried out by Favre [6 and 7] are insufficient for
the construction of a correlation function at various distances from, but in close proximity
of a wall. We shall, first of all express R"x"l(fl’ % %5° &3, T) in terms of intensity of
the velocity longitudinal component at various distances from the plate <v,” % and of the
dimensionless correlation coefficientr, . £y %, %5% &30 T). The corresponding relation
between the spectra of these parameters is of the form

Eyp, (b1, 23, 74, ks, @) = (01" (22)> 7 <013 (@) e, o, (k1. 71, 22, by, ©) (3.1

Here €y vy I8 the spectrum of the correlation coefficient Toivge

As long as the boundary layer under consideration is uniform in planes parallel to the
plate surface, as it is assumed to be in the following, the intensity of the velocity longitu~
dinal component will remain a function of distance from the surface only. Experimental data
of Klebanov and Laufer on measurements of the longitedinal component in the wall neighbor-
hood processed by Monin and laglom [8] yield for the wall neighborhood

.2x
o2 (m)y P = a R | v 2 (3.2)

Here a =~ 0.3, and v* is the dynamic velocity. Experimental data {6 and 7] do not allow
to predict variations of "1 v, Kyy %9 xg', ky, @) in the immediate vicinity of a wall. It is
not difficult to ascertain witﬁ the aid of (2.4) that the presentation of evlv (k!, %g ”2" k-3,
@) in the form e, , Gy, 53, %57 k3, @) =71, (x5, %,7) evv, Gys Ky ) is not possible
because of the boundedness of the pressure real spectrum epbd‘v kg @) whenk, = 0.

One of the possible and probable approximations of the velocity longitudinal component
spectrum which would satisfy the condition of the pressure boundedness at («) &, =0 is a
function of the form (used by us in the following):

o, (F1o T2, 2y ks, @) = 0XP [—vky |2, — 21l eyp, (ks + 0, + 0, ks, @) (3.3)

Function ey, (ky + 0, 0, k3, @) will be understood to be the space-time spectrum of
the velocity longitudinal component at very small distances from the plate surface.

Favre’s experimental data [6 and 7] indicate that the second order moment of the longi~
tudinal component satisfies the following fundamental requirements. First, the double cor-
relation Toyw (£, , T) attains its maximum value at a certain optimal time lag T = &V
where V is the convection velocity of transport of inhomogeneities in the turbulent boundary
layer by means of the average motion (¥ = 0.8 V). This cormrelation coefficient is roughly
symmetric with respect to the optimal time lag. Curves corresponding to the maximum of the
correlation coefficientr, , =1, , (£))= 14 %35 %, T) at various distances from the
plate surface are shown on Fig. 1. Curves 4 have been plotted for x, » &, curve 3 for e
= 0,248, curve 2 for %, = 0.068, and curve I for 7 = 0. Second, the autocorrelation coeffi~
cientr, . (T) (Fig. 2), and the coefficientr, (£,) of longitudinal correlation (Fig. 3)
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are of a nearly exponential form. Curve 1 on Fig. 3 corresponds to the longitudinal correla-
tion for x, = 0.145, and curve 2 forx, = 0.295,

wh We shall consider two models of correlation funce
oo,
N "7 5
N
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Fig. 1 Fig. 2

tion RV!"t ¢, £ 3+ T) which conform to these experimental relationships:
) a) the Taylor frozen turbulence model with a purely convective trans«
port of inhomogeneities by the average motion

r
ad Fou, (B1r B ¥) = exp [—alfy — Vil exp [—gikll  (3.4)

b) a somewhat more complicated model in which account is taken of
the turbulent vorticity degeneration in the process of their transport in the
direction of the average motion. The corresponding correlation coefficient
is of the form
o o, (10 a0 ¥ = axp [—a} & — Ve |—BIE1]] exp [— g1 § [1(3.5)

In the following we shall use the latter form of the longitudinal compo-
nent correlation function. Parameters 0. and 3 determined from the compar-
2 x ison of (3.5) with curves plotted in Figs. 1, 2 and 3 are @ = 2.0/5, B =
= 1.4/5. Here & is the boundary layer thickness. It is not possible to de-
termine the value of coefficient g because of the
x\ 7 lack at present of experimental data on the correle
) \ tion of the velocity longitudinal component in a di-

S

—2 rection paralle! to the plate surface and normal to
f— the direction of the main stream. Coeflicient y is
7 025 a5 Q25 selected from the comparison of Tyyv (2, - x,)
Fig. 3 with the correlation coefficientr, ix 2 B =%5)
calculated from Favre’s experimenta’l data [62} (Fig.

4). Curve I on Fig. 4 corresponds to coefficientr, , (x,, x, — x,”) for distance x, = 0.0625,
Y2 & curve 2 for x, = 0.355 and carve 3 for %= 0,758,

vy Analysis of curve behavior at the smallest distances
of the reference point x, from the plate surface in
y the neighborhood of x, = x, = 0 yields the value
3 Y~ 4.9.

.
o~
-

S
-

) 4. In order to obtain the pressure spectrum at the
A plate surface we substitute Expressions (3.1) and
{3.3) into the right-hand side of solution {2.4)

vy \ n\.‘j’
g % \\\ . El"p (Rys. kgy @) = (4.1)
/ T~ 34“’?’% v* ea‘g‘ (kl' + 0’ +0 * k’! (I))
-4

g 4« 8 r Since T,, = pov* 2, hence we rewrite (4.1) in the
‘5-:;”" form
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Epp (ky, Ky, 0) = 4“‘?‘110’ €o,0, (ky, + 0, -0, ky, ) (42)

Passing in (4.2) from spectra to cormrelation functions, we obtain the reciprocal pressure
spectrum

rpp (El' 239 (I)) =4a'?"‘w’ rvlv, (El + 0: + 0, g;. (l)) (4.3)

It follows from (4.3) that for the mean square value of pressure at the wall the following
relationship is valid

Py = 4adyit,?, (p'H 1= 2aytw (4.4)

Substituting into (4.4) the previously found values of a and y, we obtain <p’® %= 2.947T,,

This result coincides with Kraichnan’s conclusions [1] as to the proportionality of the
mean square value of friction stress at the wall, and with Lilley’s estimates of the value of
the proportionality coefficient (2]

1.7 <<p'® 11y < 3.1

F.q. (4.4) indicates moreover that the proportionality coefficient is determined by the an-
gle between the intensity profile of the pulsating velocity longitudinal component and the
plate plane, and by the radii of correlation of that same velocity component.

Data on the mean square value of pressure pulsations at a plate surface obtained by
Willmarth and Wooldridge [9] yield 2.7 and 2.2 as the value of this coefficient in two differ-
ent conditions.

Representing the friction stress at the wall in terms of the velocity head and of the Rey-
nolds number in the width of momentum loss [10], we obtain for <p’2>% the following ex~
pression

pH'r = 0.0131 ayp, Vo2 Ryzi* (4.5)

It follows from (4.5) that the mean square value of pressure is proportional to the free
stream velacity with an exponent slightly smaller than two (11/6).

In order to determine from Formula (4.2) the space time pressure spectrum Epp(lcl. ki, 0)
it is necessary to obtain ey, Uk, + 0, + 0, k3, ) from the correlation function ’vxvlél'
&3, T). We then have

32a%%afBgVT ?
=TT B (h— 0/ VP (& + k)
The form of the reciprocal spectrum of pressure at the plate surface which follows from
(4.6) is

Eyp (k1 ks, ©) (4.6)

4a*yaVr 2 0k
Ty (B o @) = 5oy o B | g — Bl & | —g 1% @7

In the case of coincidence of the two points &, = £3 = 0, Eq. (4.7) becomes the power
spectrum of pulsating pressure
4a*y*alVx B

Tpp (O) =i 1 o) (4.8

Results of direct measurements of the power spectrum of pressure at a plate obtained by
Willmarth and Wooldridge [9] are shown on Fig. 5. The curves are shown in terms of the di-
mensionless frequency Q= w8*/V, (5* is the width of displacement), and are normalized
by magnitude % po? V3 5*. A similar operation performed on Expression (4.8) yields the
dimensionless power spectrum Fpp‘ in the form as follows:

. Fpp () {6a*aVs,’
Top = T/poWe* =~ 7 Vo8 [(0.128) 1+ ] “9

The analytical form of (4.9) indicates the presence of a horizontal stretch at low frequen~
cies when {} € 0.1a8, and a drop proportional to the square of frequency when Q> 0.1 a8,
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while the limit frequency of the drop is determined by the radius of component v, " longitu-
dinal correlation. This coincides qualitatively with the behavior of curves on Fig. 5, while

wt the apparent discrepancy in the magnitude of the limit
iy frequency is explained by the inexact form of the correla~
/;7,0 tion function of the fluctuating velocity longitudinal com=
M ponent.
X The dimensionless reciprocal pressure spectrum
V/ad 4.10
Fpp (g?a 53! ﬁ)) l(ﬂgl ( )

e S LRl
indicates that in the direction of the average motion the
flow is unfrozen. Experimental determination of the di-
mensionless reciprocal spectrum by Harrison [11], and
Willmarth and Wooldridge [9] indicate a somewhat differ-
ent pattern of turbulence degeneration with a dimension=
less reciprocal spectrum

107 T (&, © ;
pp \o1* iwg; | £yl 1
P oo = ey o [~

but different authors do not appear to agree on the value
of parameter b.
ar 7 0 e The derived pressure pulsation statistical charactere
Fig. 5 istics (4.9) and (4.10) do not completely coincide with
g results of measurements. It may be noted, however, than
none of the previous investigators had theoretically computed such characteristics {(with
respect to velocity fields). The complexity of Eq, (1.4) apparently precludes the derivation
of results in an analytical form. With the use of Eq. (1.5) a refinement of the pressure char~
acteristic is, however, possible, if results of precise measurements of second order moments
of the longitudinal components of pulsating velocity in the immediate vicinity of a surface
are made available.
It should be noted that a similar approach may be used for the determination of pressure
fluctuation along a curvilinear surface in an incompressible fluid, as well as for the analy-
sis of pressure fluctuations in turbulent boundary layers of compressible fluids.

0
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Investigation of the stability of fluid flows in plane pipes [1] is usually associated with the
investigation of the behavior, in time, of an infinite periodic wave of the form ¢ (y) exp i

tkx = @t} where k is real, The relation between @ and k is found from the condition of ex»
istence of a nontrivial solution of a boundary value problem for ¢ {y} and is defined by a
multivalued analytic function & (@). It was shown in [1 and 2| that the function & () has
only one branch &, (w) giving real values of k¥ when Im @ > 0, This branch corresponds to
the perturbations propagating downstream. Earlier [3] the author computed the function ky
(w) for real @ for the case of flows of an incompressible fluid at large Reynolds’ numbers.
It is easily seen that the behavior of k(@) will not be greatly altered when the fluid is com-
pressible, provided that its compressibility is sufficiently amall.

The condition of instability of the flow in a pipe of large but finite leugth, can be reduced
to the fact[3 and 4] that Eq.

Im [k (@) — kg (@)] =0 )
has solutions @ when Im @ > 0, The expression k.(w) in (1) will, for the time being, denote
the branch bf & (@)} defining the wave number of some perturbation propagating upstream. We
shall show that in the case of weakly compressible flows with high Reynolds numbers the
above condition of instability holds, provided that the branch corresponding to acoustic os=
cillations propagating upstream is taken as k(w).

I, either the flnid is compressible or the pipe walls are elastic, then acoustic or Zhukove
skif waves may be set up and propagate along it. Their wavelength will, for the given fre-
quency, be inversely proportional to the compresaibility of the fluid and the walls. When the
wavelength becomes large, we can neglect the tranaverse velocity and pressure gradient
components., Excess pressure at some cross section will be proportional to the excess of
mass per unit length of the pipe, so that

1
1
fop = ikypoa® 5 \‘ udy 2y

-1
where k, and @ are the wave number and frequency of the given wave, pq is the density of
the fluid, o is the velocity of propagation of the perturbations and u is the longitudinal com~
ponent of the velocity perturbation. In deriving (2), we have assumed that w/k > u.

Function u(y) satisfies Eq.



