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A method for the computation of statistical characteristics of pressure pulsations directly 
at a plate surfBce, based on the analysis of the NavierStokes equations is proposed. This 
permits in the c-e of flows past a plate to derive the unique relationship between the sec- 
ond order moment of pressure pulsation at the surface and the second order moment of the 
pulsation velocity longitudinal component in the immediate proximity of the plate surface. 
Information about the velocity field required iu this case is considerably smaller than that 
necessary in the conventional approach used by Kraichnan [l] and LilIey (21. 

1. We shall consider the turbulent boundary layer of an incompressible fluid along an 
infinite flat plate defined by Eq. x2 = 0. Coordinates x1 and x3 lie in the plate surface 

plane. In this case the flow is subject to the Navier-Stokes equations and to the incompres- 
sibility equation 

Here, I is the time, p the pressure, po the fluid density, v the viscosity, and 01 the com- 
ponent of velocity v in the direction of the x,-axis, with u, = 0 wheu x1 = 0. 

We shall examine the behavior of these equations in the close proximity of a smooth 

flatwaIIfx2=0,--<x1<+-,- m < rg < + 00). Ladyshenskaia in her monograph [3] and 
in her subsequmt paper [4] had shown that there exists a solution of Eq. (1.1). and that for 
a sufficiently smooth surface S (S E t,) the derivatives of velocity V, including those of 

the second order are continuous in the bounded area, while first order derivatives of pres- 
sure p are continuous up to the boundary. 

On this basis we can examine Eqs. fl.1) at the surface itself, When x2 + + 0, we obtain 
from the first of Eqs. (1.1) three relationships which correlate pressure gradients and the 
second derivatives of velocities at the surface 

We hove made use here of the fact that at the stationary surface x1 = 0 not only all vr = 
=Ofi= 1, 2, 3), hutafso8u,f~t=O, andthat furthermored*‘Pq/i3rpaxlP=Owhenj, 

1 + 2 fj = 1, 2, 3). 
Eqs. (1.2) with subscripts k = 1 and k = 3 represent a system of differential equations in 

second order partial derivatives of pressure which completely defines pressure variation 
along the plate surface. A single differential equation of the Poisson type may be readily 
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obtained from this for the pressure distribution along the plate surface only 

95 

(1.3) 

The linearity of the first part of Eq. (L3)gives it e certain advantage over the equation 
previously used by Kraichnau [ 11 and Lilley 121 

a”vivj 
0.4) 

The derived Eq. (1.3) is not inconsistent with Eq. (1.4) as regards the pressure distri- 
bution et any point of a turbulent stream, end is a particular case of the letter. 

The computation of pressure characteristics on the surface by means of Eq. (X.3) is elno 
preferable because, first of all, it makes it possible to do with a lesser amount of informs- 
tion about the boundary layer velocity field, end secondly it iuvolves the solution of a two- 
dimensional problem instead of having to integrate Eq. (1.4) over the whole volume. 

The equation of pressure fluctuations in a turbulent boundary layer et the plate surface 

is readily obtained from (1.3) 

a*v; 
vQP’(% 0. 0. Q = IL &g- (i = 1, 3) (1.5) 

i =*=0 

Eq. Cl.5) is valid in the case of the basic stream being parallel to the plate (nongradient 
flow), es well as in the case of the free stream flowing et an angle to the plate (positive, 
or negative mean pressure gradient). 

2. In space-time terms the FourierStiltjes transform for velocity and pressure fluctua- 

tions [sI, Eq. (1.5) is expressed by (2.1) 

Here o is the temporal frequacy, and k Ur,, k 3) the wave vector in the plate plane. 
We shall take into account the relationship between the third derivatives of velocity 

fluctuations (wt‘ and us‘) which is easily obtained from (1.2) 

aatjl* I PJVg 
axs=axs *ad = arz,ax, x,=0 I 

As a. result Eq. (2.1) is reduced to the form as follows: 

. 
dp’ (kl, 0, ks, 0) = $ 

aado;, (h a, +z’, ks, 0) 
ax,3 I x+=0 

(2.2) 

From (2.3) we establish in the usual mauner the relation between the space-time spectra 
of the fluctuating pressure at the wall and the fluctuating velocity longitudinal component 

(2.4) 

Tbe term Es,(k,, k,, 01 will b e understood to represent the average of the ensemble 

of patterns of the turbulent boundary layer at the plates 

J&Z, (h, ka, O) = Iim 
W (k 0, ‘+S. of dp’ +I, 0, ks, III)) 

dkl dks do 

for dk,+ 0 we have dk, + 0, do+ 0. 

From the space-time spectrum Epp & 1, k, 01 we can obtain the reciprocal spectrum 

rPPftI, ta, of and the prensure correlation R,_,~t, f3, 71, if we assume that spectrum 

gpp&t, k, 01 corresponds to a boundsry layer uniform in directions parallel to the plate 



surface aud stationary with teapact to time. 

RereIS;=xt-xt:~~=rxJ-xxf: e(et, 6J is the distance between points under con- 

sideration, and T -9 t - c’thc time difference at thwe points. In a developed turbnlent layer 

at the anrface of a smooth plate the conditions of uniformity and atationarity for zero mean 

prcaanre gradient are approximately sati,afied. 
~elation~ip (2.4) which is fundamental in this analysis defines the statistical charao 

teriatfcs of presanre at the surface in terms of tbe correlation function of the velocity lon- 
gitudinal component, since 

E,,ul (k, 23. 24, h, of = 
-I- +a, +,= 

1 . 

\ s s 

f2.5) 

= $p&_*_ 
R,,,, (h ~3, x3’, &3, T) x exp (ik& + ikds + iw) &I 4% dr 

3. Even the most detailed measurements of the correlation function of the longitudiual 
component of velocity in a boundary layer ‘curried out by Fevre [6 and 71 are itmtfficient for 
the conetmction of e correlation function at various distancea from, but in close proximity 
of a wall. We shall, first of all express Rvt,,t(<t, z, x2’, tt, 7) in terms of Intensity of 

the velocity longitudinal component at varioue distances frem the plate <v,‘%% and of the 

dimeneionlese correlation coefficient r,tvl (tt, 3, .x2’, fa, 7). The cotreapondfng relation 

between tbe spectra of these parameters is of the form 

%v, (k 1, 5% x9’, ka, o) = <Q’~ (~~),“’ <q’l (&f>*/’ evIvI (ki, 22, x3’, ka, co) (3.1, 

Here ev,vl is the spectrum of the correlation coefficient r 
‘1 ‘I’ 

As long as the boundary layer under consideration is uniform in planes parallel to the 

plate surface, as it is assumed to be in the following, the intensity of the velocity longitu- 
dinal component will remain a function of distance from the surface only. Experimental date 
of Klebauov and Laufer on measurements of the longitudinal component in the wall neighbor 
hood processed by Monin and Iaglom 181 yield for the wall neighborhood 

(3.21 

Here a = 0.3, and u* is the dynamic velocity. Experimental data [6 and 7f do not allow 
to predict variations of evt y (kt, x2, x1 , ’ k,, w) in the immediate vicinity of a wall. It is 

not difficult to ascertain WI Ii the aid of (2.4) that the presentation of e, y (k,, xP x2’, k,, 

w)intheformc ,,tvt ckt, 3, xt< k,, o)= rvtv (x2, x2’) e,.tw Cc,, k, ‘0) is not possible 

because of the boundednesa of the pressure rea f spectrum eP;l d t, k, 01 when k, = 0. 

One of the possible and probable approximations of the velocity longitudinal component 
spectrum which would setiefy the condition of the pressure bonndedneas at (.) k, = 0 is a 
function of the form (used by us in the following): 

%I*,* @lB =¶* xr“ kS, a) = exp [--yk, ]zs - zp’il eotv, (k,, C 0, -I- 0, 4, 0) (3.3) 

Function evfvl tit + 0, 0, ks, 01 will be understood to be the space-time spectrum of 

the velocity longitudinal component at very small distances from the plate surface. 

Favre‘s experimental data [6 and 71 indicete that the second order moment of the longi- 
tudinal component satiefies the following fundamental requirements. Firet, the double COP 
relation r ‘,pt (et , 7) attains its maximum velue at a certain optimal time lag T 91 cl/V 

where V is the convection velocity of transport of ~homogeneities in the turbulent boundary 

layer by means of tbt average motion (V = 0.8 V,). This correlation coefficient is roughly 
symmetric with respect to the optimal time lag. Curves corramponding to the maximum of the 
correlation coefficient r 

vtv1 = rttvt(Q= (&*x/I 22s 7) at various distances from the 

plate surface are shown on Fig. 1. Curves 4 have been plotted for xt >> 8, curve 3 for x2 = 

- 0.243, curve 2 for x2 = O.O61Ei, and curve 1 for 7 I: 0. Second, the autocorrelation coeffi- 

cient r ‘t’t (7) (Fig. 2) , and the coefficient rvtvt (et) of longitudinal correlation (Fig. 3) 
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WC of a nearly exponential form, C~IYG 1 011 Fig. 3 corresponds to the longitudinsl C~O~W 

tion for x1 - 0.148, and cnrve 2 for x1 - 0.296. 

10 We shall consider two models of correlation func- 

Fig. 1 Fig. 2 

tion R vrvr(t1.93’ 7 w ic conform to thess experimental relationshipa: f h h 

I 
a) the Taylor frozen turbulence model with a purely convective trms- 

port of inhomogeneities by the average motion 

v,u, {El, &. x) = exp f-al6 - Fxll e=P f-gl&lI (3.4) 

b) a somewhat more complicated model in which ecconnt is t&n of 
the turbulent vorticity degeneration in the process of their transport in the 
direction of the average motion. The corresponding correlation coefficient 
is of the form 

- axp I-0 i El - VT I -P I et II e=P I-- gl El II (3.5) 

shall use the latter form of the longitudinal camp* 
on. Parameters u and s determined from the compsr- 
es plotted in Figs. 1, 2 and 3 are OL = 2.016, B - 

e boundary layer thickness. It is not possible to da 
termine the value of coefficient g becsose of the 
lack at present of experimental data on the correlr 
tion of the velocity longitudinal component in a di- 
rection parallel to the plste outface attd normal to 
the direction of the main otresm. Coefficient y is 

0 0.25 selected from the comparison of r 
.l" 

Fig. 3 with the correlation coefficient r ll.“:.;;IL ‘1 
calculated from Favre’s experfmi&\ dats [6 (Fii. 

4). Curve 1 on Fig. 4 corresponds to coefficient rvrvt (5, x1 - x2’) for distsnce xx w O.O62& 
curve 2 for%,= O.%S end carve 3 for x,. - 0.756. 
Ansfysis of &rve behsvior at the smsll&t distances 
of the reference point xx fmm the plate snrface in 
the neighborhood of x2 - x2’= 0 yield0 the value 
y= 49. 

4. In order to obtain the pressure spectrum at the 
plate surface we substitute Expressions (3.1) snd 
(3.3) into the right-hmd side of solution (2.4) 

Epp h k, 0) = 

=40?%? v+’ eu*o, 
(4.1) 

(k,. + 0, +0 t 4% 0) 

Since 7, - pov l 2r hence we rewrite (4.1) in the 
form 



98 T.N. Krosil’nikovo 

Ep,, (k,, km 0) = 4a’y’7,,,* eD,v, (k,, + 0, +O, k,, oj (4.2) 

Passing in (4.2) from spectra to correlation functions, we obtain the reciprocal pressure 
spectrum 

rpp (Et* ED 0) =4c’T%D’ rs”, (t + 0, + 0, a, 0) (4.3) 

It follows from (4.3) that for the mean square value of pressure at the wall the following 
relationship is valid 

<P”) = 4a*,s, (~‘2) ‘Ia = 2ayrw (4.4) 

Substituting into (4.4) the previously found values of o and y, we obtaiu <p’%%= 2.947, 

This result coincides with Kraichnan’s conclusions [l] as to the proportionality of the 
mean square value of friction stress at the wall, and with Lilley’s estimates of the value of 
the proportionality coefficient [2] 

1.7 <:(pV lz, < 3.1 

F.q. (4.4) indicates moreover that the proportionality coefficient is determined by the an- 
gle between the intensity profile of the pulsating velocity longitudinal component and the 
plate plane, and by the radii of correlation of that same velocity component. 

Data on the mean square value of pressure pulsations at a plate surface obtained by 
Willmarth and Wooldridge [9] yield 2.7 and 2.2 as the value of this coefficient in two differ- 
ent conditions. 

Representing the friction stress at the wall in terms of the velocity head and of the Rey- 
nolds number in the width of momentum loss [ 101 , we obtain for <p’s>% the following ex- 
pression 

(P2>“’ = 0.0131 ayp, Vo2 It&‘* (4.5) 

It follows from (4.5) that the mean square value of pressure is proportional to the free 
stream velocity with an exponent slightly smaller than two (11/6). 

In order to determine from Formula (4.2) the space time pressure spectrum E,,(kt, k , 01 
it is necessary to obtaiu c,t,,t t , (k 
(a, 7). We then have 

+ 0, + 0, k, , w j from the correlation function rvtvt Qt. 

ET,, (kl, ks, oj = 
32aPyaafSgV’rw2 

(r”P +- 02) [p’ -t (/Cl - 0 / VP] (g2 + /is?) (4.6) 

The form of the reciprocal spectrum of pressure at the plate surface which follows from 
(4.6) is 

In the case of coincidence of the two points Et = t5 = 0, Eq. (4.7) becomes the power 
spectrum of pulsating pressure 

4a”fbVTwt 

rpp (0) = a ($V2 + a”) (4.8j 

Results of direct measurements of the power spectrum of pressure at a plate obtained by 
Willmarth and Wooldridge [9] are shown on Fig. 5. The curves are shown in terms of the di- 
mensionless frequency Cl = 0 6 ‘/V. (6 l is the width of displacement), and are normalized 
by magnitude % po2 V, 3 6,. A similar operation performed on Expression (4.8) yields the 
dimensionless power spectrum rPr,* in the form as follows: 

rpp (Q) 
%;, = ‘/.JpoVoYi’ = 

16a4aaVzwz 

Ytp,*v~as”[(o.iCts)’ + rP1 (4.9) 

The aualytical form of (4.9) indicates the presence of a horizontal stretch at low frequen- 
cies when Q << O.l&, and a drop proportional to the square of frequency when n > 0.1 aa, 
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while the limit frequency of the drop is determined by the radius of component ut’longitu- 
dinal correlation. This coincides qualitatively with the behavior of curves on Fig. 5, while 

1 
the apparent discrepancy in the magnitude of the limit 
frequency is explained by the inexact form of the correla- 

I 

tion function of the fluctuating velocity longitudinal com- 
ponent. 

The dimensionless reciprocal pressure spectrum 

T--l Q&’ E3. WI 
(4.10) 

r PP io) -= cxp -$+- exp I-- p 151 I -g I53 I] 

indicates that in the direction of the average motion the 
flow is unfrozen. Experimental determination of the di- 
mensionless reciprocal spectrum by Harrison [ 111, and 
Willmarth and Wooldridge [Ql indicate a somewhat differ 
ent pattern of turbulence degeneration with a dimension- 
less reciprocal spectrum 

I$ 
but different authors do not appear to agree on the value 
of parameter b. 

IO 9 The derived pressure pulsation statistical character- 

Fig. 5 
istics (4.9) and (4.101 do not completely coincide with 
results of measurements. It may be noted, however, than 

none of the previous investigators had theoretically computed such characteristics (with 
respect to velocity fields). The complexity of Eq, (1.41 apparently precludes the derivation 
of results in an analytical form. With the use of Eq. (1.51 a refinement of the pressure char- 
acteristic is, however, possible, if results of precise measurements of second order moments 
of the longitudinal components of pulsating velocity in the immediate vicinity of a surface 
are made available. 

It should be noted that a similar approach may be used for the determination of pressure 
fluctuation along a curvilinear surface in an incompressible fluid, as well as for the analy- 
sis of pressure fluctuations in turbulent boundary layers of compressible fluids. 

5. 

6. 

7. 
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STABILITY OF FLOWS OF A WAKLY COMPBESSlBLE FLUID 
IN A PLANE PlPE OF LARGE, BLJT FINITE LENGTH 

PMM Vol. 32, No. 1, 196a, pp. 112-114 

A.G. KULMOVsKrI 
@fo*caw) 

(Rcceiucd OaWbor 4, 2967) 

Investigation of the stability of fluid flows in plane pipes [l] is usually associated with the 
Jnvsstigstion of the behavior, in tJms, of sn infinite periodic wave of the form C)(Y) axp i 
(kx - 02) where k Je reel. The relation between o and k is found from the condition of ex- 
istence of a no&hid solution of a boundary value 

p” 
oblem for 4(r) and is defined by a 

multivdned analytic fun&on k Go). It was shown in 1 and 21 that the function k Iw) has 
only one branch k, &IA giving reel valnes of k whan hu o > 0. This branch corresponds to 
the pertnrbatfona pmpsgating downstream. Earlier [3] ths author oompoted the function k 1 
(0) for real w for the case of flowa of an incompressible fluid at large Reynolds’ numbers. 
It is easily 8een that the behavior of k&(o) will not be greatly aftered when the ffaid Jo com- 
pressible, provided that its compressibJlity is sufficiently smell. 

The ccmdition of instability of the flow in a pipe of large but finite length, can be reduced 
to the fact [3 aad i] thst Eq. 

I= f& (0) - ke (of] = 0 (iI 
has solutions o whco Im o > 0, The expression k,(o) Jn (1) will, for the time being, denote 
the branch bf k (0) defining the wave number of some perturbation propagating upstream. We 
shall show that in the cue of weakly compressible flows with high Reynolds numbem the 
above condition of Jnstability holds, provided that the breach corre8pondJng to acoustic os- 
cill8tJons propagating upstream Ja taken as k,(o). 

If, either the fInid is compressible or the pipe walla are elastic, then acoustic or Zhukov- 
8kiJ wave8 msy be 84t up and propagate along it. Their wavelength will, for the given fre- 
q.nency, be Jnvemely pmportional to the compressibility of the fluid and the walls. When the 
wavelength become8 large, we csn neglect the transverse velocity and pressure gradient 
components. Excess pressure at some CKI~E section will be proportional to the exe488 of 
mus per unit length of the pipe, so that 

1 

irpp = ik,p& f 
!i udy (21 
-1 

when, k, lprd Q) are ths wave number and fmqoanay of the givsrr wave, pa is the dsnoity of 
the fluid, a Js the velocity of propa@on of the perturbations 8nd I( is the IongitudJtul com- 
ponent of the velocity perturbation. In derivJng (21, we have l aaomed that o/k,*> II. 

FunctJon u(y) 88tisfJe8 Eq. 


